The Tree Property at אω2+1 and אω2+2 Dima Sinapova and Spencer Unger

نویسنده

  • SPENCER UNGER
چکیده

We show that from large cardinals it is consistent to have the tree property simultaneously at אω2+1 and אω2+2 with אω2 strong limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tree property and the failure of the Singular Cardinal Hypothesis at ℵω2

We show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at אω2+1 and the SCH fails at אω2 .

متن کامل

Successive Failures of Approachability

Motivated by showing that in ZFC we cannot construct a special Aronszajn tree on some cardinal greater than א1, we produce a model in which the approachability property fails (hence there are no special Aronszajn trees) at all regular cardinals in the interval [א2,אω2+3] and אω2 is strong limit.

متن کامل

Reflection of stationary Sets and the Tree Property at the Successor of a singular cardinal

We show that from infinitely many supercompact cardinals one can force a model of ZFC where both the tree property and the stationary reflection hold at אω2+1.

متن کامل

Square and Delta reflection

Starting from infinitely many supercompact cardinals, we force a model of ZFC where אω2+1 satisfies simultaneously a strong principle of reflection, called ∆-reflection, and a version of the square principle, denoted (אω2+1). Thus we show that אω2+1 can satisfy simultaneously a strong reflection principle and an anti-reflection principle.

متن کامل

Modified Extender based forcing

We analyze the modified extender based forcing from Assaf Sharon’s PhD thesis. We show there is a bad scale in the extension and therefore weak square fails. We also present two metatheorems which give a rough characterization of when a diagonal Prikry-type forcing forces the failure of weak square.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016